THE COBA 2018 USER MANUAL

PART 0

THE APPLICATION OF THE COBA MANUAL

Contents

Chapter

1. Detailed Contents of the COBA Manual
2. Introduction
3. Bibliography
4. Enquiries
1. DETAILED CONTENTS OF THE COBA MANUAL

PART 0 THE APPLICATION OF THE COBA MANUAL

Chapter
1. Detailed Contents of the COBA Manual
2. Introduction
3. Bibliography
4. Enquiries

PART 1. ECONOMIC CONCEPTS IN COBA

Chapter
1. The COBA Method
2. The ‘Do Minimum’ and ‘Do Something’ Options
3. The Fixed Trip Matrix
4. Discounting and the Price Basis
5. Appraisal Period
6. The Treatment of Taxation

PART 2. THE VALUATION OF COSTS AND BENEFITS IN COBA

Chapter
1. The Valuation of Time Savings
2. The Valuation of Vehicle Operating Costs
3. The Valuation of Accidents
4. The Valuation of Accidents on Links
5. The Valuation of Accidents at Junctions
6. Construction Costs
7. The Preparation of Cost Data for Use in COBA
8. An Example of Scheme Cost Inputs
9. Highway Maintenance
10. Delays During Construction
11. A Summary of the Items of Costs and Benefits
12. How to validate a COBA appraisal
PART 3. THE APPLICATION OF COBA

Not used.

PART 4. TRAFFIC INPUT TO COBA

Chapter
1. Network Description
2. Compatibility Between the Traffic Model and COBA
3. Automatic Interface Programs
4. Choice of Years for Traffic Flow Data
5. Variation in Traffic Flow
6. Network Classification and Seasonality Index
7. Flow Groups
8. Vehicles Categories
9. Conversion of Input Data to AAHT
10. The National Traffic Forecasts
11. Local Traffic Forecasts

PART 5. SPEEDS ON LINKS

Chapter
1. COBA Road Classes
2. Rural Single Carriageways (Road Class 1)
3. Rural All-Purpose Dual Carriageways and Motorways (Road Classes 2-6)
4. Urban Roads (Road Classes 7 and 8)
5. Small Town Roads (Road Class 9)
6. Suburban Roads (Road Classes 10 and 11)
7. User Defined Relationships (Road Classes 12-20)
8. Treatment of Overcapacity on Links
9. Representative Diagrams of Speed/Flow Relationships
10. Local Journey Time Measurements
11. Accuracy of Local Journey Time Measurements
PART 6. JUNCTIONS IN COBA

Chapter

1. When to Model Junctions
2. Junction Choice
3. Junction Types Modelled
4. The Concept of ‘Maximum Delay’
5. Geometric Delay
6. Turning Flows at Junctions
7. Queuing Delay
8. Formulae for Junction Capacity
9. Geometric Parameters

PART 7. HOW TO USE THE COBA PROGRAM

Chapter

1. Introduction
2. Structure of COBA Data
3. The Reclassification Process
4. Detailed Description of COBA Data
 4.1 Introduction
 4.2 Control Records
 4.3 Basic Data
 4.4 Network Data
 4.5 Scheme Data: Declassifications
 4.6 Scheme Data: Costs
 4.7 Scheme Data: Traffic Flows
 4.8 Scheme Data: Link Classifications
 4.9 Scheme Data: Node Classifications
 4.10 Scheme Data: Accidents
 4.11 Final Control Records
5. Some Notes on the COBA Output
6. The COBA Coding Sheets (KEY Record Formats)
7. Data Preparation
8. Obtaining and Using COBA
9. Examples of Input Data

PART 8. INDEX AND ABBREVIATIONS

Chapter

1. Index
2. Abbreviations
LIST OF FIGURES

PART 0. THE APPLICATION OF THE COBA MANUAL

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/1</td>
<td>The COBA Appraisal Process</td>
</tr>
</tbody>
</table>

PART 1. ECONOMIC CONCEPTS IN COBA

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>Process for Calculating User Network Costs</td>
</tr>
</tbody>
</table>

PART 2. THE VALUATION OF COSTS AND BENEFITS IN COBA

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/1</td>
<td>Example of a 4-arm Major Minor Junction</td>
</tr>
</tbody>
</table>

PART 4. THE TRAFFIC INPUT TO COBA

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/1</td>
<td>The Reassignment Process</td>
</tr>
<tr>
<td>7/1</td>
<td>Flow Groups Representing Annual Flow (SI=1.05)</td>
</tr>
<tr>
<td>7/2</td>
<td>Variation in Flow Group Multipliers With Seasonality Index</td>
</tr>
<tr>
<td>8/1</td>
<td>COBA Vehicle Categories</td>
</tr>
<tr>
<td>9/1</td>
<td>Calculation of AAHT Flows by Flow Group</td>
</tr>
<tr>
<td>9/2</td>
<td>The Variation of M-Factor With Seasonality Index</td>
</tr>
</tbody>
</table>

PART 5. SPEEDS ON LINKS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/1</td>
<td>Measurement of Road Geometry on Rural Roads</td>
</tr>
<tr>
<td>9/1</td>
<td>Typical Rural Speed/Flow Relationships - Vehicles/Hour/Lane</td>
</tr>
<tr>
<td>9/2</td>
<td>Typical Rural Speed/Flow Relationships - Vehicles/Hour/Direction</td>
</tr>
<tr>
<td>9/3</td>
<td>Typical Urban Speed/Flow Relationships</td>
</tr>
<tr>
<td>9/4</td>
<td>Typical Small Town Speed/Flow Relationships</td>
</tr>
<tr>
<td>9/5</td>
<td>Typical Suburban Speed/Flow Relationships</td>
</tr>
</tbody>
</table>

PART 6. JUNCTIONS IN COBA

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/1</td>
<td>Example of a Four-Arm Junction</td>
</tr>
<tr>
<td>6/2</td>
<td>Production of Turning Proportion Matrices</td>
</tr>
<tr>
<td>7/1</td>
<td>High and Low Definition Peak Models</td>
</tr>
<tr>
<td>7/2</td>
<td>Queuing Delay Curves</td>
</tr>
<tr>
<td>9/1</td>
<td>Major Road Width</td>
</tr>
<tr>
<td>9/2</td>
<td>Lane Width for Non-Priority Streams</td>
</tr>
<tr>
<td>9/3</td>
<td>Measurement of Visibility Distances V_L and V_R</td>
</tr>
<tr>
<td>9/4</td>
<td>Geometric Parameters of Roundabouts</td>
</tr>
<tr>
<td>9/5</td>
<td>Entry Angle on Straight Weaving Sections</td>
</tr>
<tr>
<td>9/6</td>
<td>Entry Angle on Curved Weaving Sections</td>
</tr>
<tr>
<td>9/7</td>
<td>Entry Angle on Short Weaving Sections</td>
</tr>
</tbody>
</table>
Figure 9/8 Flare Lengths for Roundabouts
Figure 9/9 Inscribed Circle Diameter for Roundabouts
Figure 9/10 Geometric Parameters for Signalised Roundabouts

PART 7. HOW TO USE THE COBA PROGRAM

Figure 4/1 Entry Links
LIST OF TABLES

PART 2. THE VALUATION OF COSTS IN COBA

Table 1/1 Annual Average Values of Time per Person and per Vehicle in COBA.
Table 1/2 Car and LGV Occupancies (per km travelled) by time of day
Table 1/3 Compound Annual Rates of Change in Car Occupancies
Table 1/4 Proportion of Car Mileage in Work Time by Flow Group
Table 1/5 Proportion of Car Mileage in Work Time by Time Period
Table 1/6 Assumed Compound Annual Rates of Growth of the Real Value of Time

Table 2/1 VOC Formulae 2010 Parameter Values in litres/km
Table 2/1a VOC Formulae 2010 Parameter Values in pence/km
Table 2/1b Fuel and Electricity Prices and Components (2010 prices)
Table 2/1c Proportion of Cars and LGV Vehicle Kms Using Petrol, Diesel or mains electricity
Table 2/2 Vehicle Fuel Efficiencies
Table 2/3 Carbon Dioxide Emissions per litre of Burnt Fuel
Table 2/4 Cost per Tonne of Non Traded Carbon Dioxide

Table 3/1 Components of Accident Costs
Table 3/2 Proportions of Fatal, Serious and Slight Accidents on Links
Table 3/3 Proportions of Fatal, Serious and Slight Accidents at Junctions
Table 3/4 Assumed Compound Annual Rates of Growth of Accident Values

Table 4/1 Default Accident Rates and Accident Reduction Factors
Table 4/2 Average Number of Casualties per Accident
Table 4/3 Casualties per Accident Change Factors
Table 4/4 Average Cost per Injury Accident by Link Type

Table 5/1 Junction Accident Parameters
Table 5/2 Observed Ranges of Flow in COBA Junction Accident Model Calibration
Table 5/3 Junction Accident Costs and Severity Splits
Table 5/4 Accident and Casualty Severity Rate Change Coefficient for Junctions

Table 6/1 The Treatment of Land and Property Costs

Table 7/1 Values of Treasury GDP Deflator index
Table 7/2 Time Distribution of Construction Works Cost for a Typical Scheme

Table 8/1 Example of Scheme Cost Profile

Table 9/1 Non-Traffic Related Maintenance Costs
Table 9/2 Estimated Maintenance Works Cost Profiles

Table 10/1 Conversion of Travel Costs to Market Prices by Vehicle Category
Table 10/2 Economic Efficiency of the Road System in Market Prices
Table 10/3 Public Accounts
Table 10/4 Analysis of Monetised Costs and Benefits

PART 4. THE TRAFFIC INPUT TO COBA
Table 6/1 Network Classification and Seasonality Index
Table 7/1 Flow Group Multipliers
Table 8/1 Annual Average Vehicle Category Proportions by Class of Road
Table 8/2 Adjustment Factors to Estimate Annual Vehicle Category Proportions
Table 8/3 Values of ‘x’ used to calculate Weekday Proportions
Table 8/4 Vehicle Category Proportion Correction Factors
Table 8/5 Total Vehicle Flow and Vehicle Category Proportions by Flow Group
Table 9/1 E Factors
Table 9/2 Variation of M-Factor with Seasonality Index (SI)
Table 10/1 Average Road Traffic Forecasts (annual percentage growth rate)

PART 5. SPEEDS ON LINKS

Table 1/1 COBA Road Classes
Table 2/1 Definition of Variables Used in Speed Prediction Formulae for Rural Single Carriageways
Table 3/1 Definition of Variables Used in Speed Prediction Formulae for Rural All-Purpose Dual Carriageways and Motorways
Table 4/1 Definition of Variables Used in Speed Prediction Formulae for Urban Roads
Table 5/1 Definition of Variables Used in Speed Prediction Formulae for Small Town Roads
Table 6/1 Definition of Variables Used in Speed Prediction Formulae for Suburban Roads
Table 9/1 Values of Variables Used in Representative Speed/Flow Relationships - Rural Roads
Table 9/2 Values of Variables Used in Representative Speed/Flow Relationships - Urban Roads
Table 9/3 Values of Variables Used in Representative Speed/Flow Relationships - Small Town Roads
Table 9/4 Values of Variables Used in Representative Speed/Flow Relationships - Suburban Roads
Table 10/1 Observed Journey Times
Table 10/2 COBA Modelled Journey Times
Table 11/1 Required Number of Journey Time Measurements

PART 6. JUNCTIONS IN COBA

Table 4/1 Maximum Delays by Flow Group
Table 5/1 Geometric Delays at Major/Minor Junctions
Table 6/1 Example of a Turning Flows Matrix
Table 6/2 Example of a Turning Proportions Matrix

PART 7. HOW TO USE THE COBA PROGRAM

Table 4/1 Speed/Flow parameters on Key 027
Table 4/2 Climbing Lane Speed/Flow Equation Constants
Chapter 2

The Application of the COBA Manual

Introduction

October 2018

2. INTRODUCTION

2.1 The Government’s approach to the appraisal of all transport projects is set out in WebTAG (Web based Transport Assessment Guidance which is owned and maintained by the Department for Transport (DfT)).

2.2 Transport projects are appraised in terms of a number of potential impacts which are grouped under the three headings of Economy, Environment and Society. The COBA (COst Benefit Analysis) program is an economic assessment tool which can be used to assess the Transport Economic Efficiency, Accident and Greenhouse Gases impacts of proposed projects. In particular, COBA compares the costs of a proposed highway scheme with the benefits derived by road users (in terms of time, vehicle operating costs and accidents), and expresses the results in terms of a monetary valuation. The output contributes to the appraisal process in the following ways:

➢ ‘Transport Economic Efficiency’: Time and Vehicle Operating Cost (VOC) changes;
➢ ‘Accidents’: Changes in Accident Costs and Casualties;
➢ ‘Greenhouse Gases’: Changes in the amount of fuel used to assist in determining changes in carbon dioxide emissions.

2.3 This document is primarily a user manual for the cost-benefit analysis computer program COBA2018. However, it also includes details of basic economic concepts used in the appraisal of highway schemes and provides a useful reference document. The manual is written primarily for use by the Overseeing Organisations’ officials and their suppliers engaged in the economic assessment of trunk roads improvement schemes. Administration procedures described therefore refer to those of the Overseeing Organisations.

The Purpose and Role of Cost-Benefit Analysis

2.4 The Green Book [HMT, 2018] sets out best practice guidance on assessing and evaluating policies programmes and projects and recommends that options should be appraised using cost-benefit analysis (CBA). The Green Book defines CBA as ‘analysis which quantifies in monetary terms as many of the costs and benefits of a proposal as feasible, including items for which the market does not provide a satisfactory measure of economic value.’

2.5 CBA therefore entails presenting as many of the impacts of a scheme or option as possible in monetary terms, so that they can be compared in a common unit of measurement. Some valuations can be made using prices paid in markets and predictions of future prices, e.g. fuel prices. The valuation of some other impacts, for which markets do not provide prices, is derived from research, e.g. stated preference studies to derive values of time that are used to convert time saved into a monetary value.

2.6 It is currently infeasible or impractical to derive monetary values for some impacts. While these impacts will not form part of a monetised CBA, the Green Book recognises their importance and recommends that supplementary techniques should be used to weigh up non-monetised impacts — it does NOT recommend that consideration should be restricted to those impacts that can be valued in monetary terms (such as those assessed by COBA). The Green Book notes that the most common technique used where there are unvalued costs and benefits is weighting and scoring, or multi-criteria analysis. An example of scoring is the Highways England’s Scheme Appraisal Report which scores both monetised and unmonetised impacts for small highway improvement schemes to provide an overall score which is used to compare the merits of schemes with different mixes of monetised and unmonetised impacts.
Application of COBA

2.7 COBA is used in the appraisal of Trunk Road schemes in England, Wales and Northern Ireland. In Scotland the equivalent program NESA is used instead of COBA. In addition, COBA is used by many Local Authorities to appraise a wide range of highway schemes. It is maintained by the Highways England.

2.8 COBA is only applicable to the assessment of the transport economic efficiency impacts of a scheme where the Overseeing Organisation has agreed that a ‘fixed trip matrix’ approach may be used. This type of assessment is one in which the volume and pattern of trips in the trip matrix is assumed to be unaffected by changes in the costs of using the road network, whether as a result of changes in the demand for travel over time, or as a result of the scheme itself. In England, a fixed matrix assessment is only likely to be acceptable in relation to small schemes costing under £5m (WebTAG unit M2). The alternative will be a variable trip matrix assessment and this will require use of the DfT’s TUBA software to assess the transport economic efficiency impacts.

2.9 It should be noted that COBA can still be used to assess the accident impacts of a scheme even where a variable trip matrix assessment is being used. However, it is expected by Overseeing Organisations that the DfT’s COBALT software [DfT, 2013] would normally be used, though both programs should provide the same or very similar results.

2.10 COBA requires the user to define the traffic flows and highway network associated both with and without the proposed scheme. Traffic flows will be determined using a method agreed with the Overseeing Organisation and this may involve building a congested assignment traffic model to determine the reassignment effects of the proposed scheme. If a congested assignment model is used, it’s more likely that TUBA and COBALT would be used to undertake economic assessment.

Impacts During Construction and Maintenance

2.12 COBA is only concerned with assessing the impacts of a scheme under ‘normal’ operation when roadworks are not present to either construct the scheme or maintain it. Impacts due to temporary roadworks installed for purposes of construction and maintenance will need to be calculated externally to COBA. This can be done using the computer program QUADRO (QUeues And Delays at ROadworks) or other suitable methods.

Overview of the COBA Process

2.13 COBA calculates the user costs on the network in terms of the three user cost streams mentioned earlier:

- changes in time;
- changes in operating costs; and,
- changes in accident costs.

2.14 The total costs of the scheme are considered in terms of:

- capital costs, (including preparation and supervision costs); and
- changes in the capital cost of maintenance of the network.

2.15 Figure 0/1 illustrates how the scheme costs and user cost changes are brought together in the overall appraisal process. The COBA program itself measures costs and benefits over the entire road network affected by a scheme, but assumes that the pattern of trip making (as opposed to the routes used) is unaffected. This is the ‘fixed trip matrix’ approach referred to above (see also Part 1 Chapter 3).
The parameters controlling the assessment of costs and benefits in COBA are based upon those published in WebTAG, and their values are periodically updated in line with changes in the relevant sections of WebTAG.
Figure 0/1: The COBA Appraisal Process

- **USER COST** on EXISTING NETWORK (discounted over 60 yrs) = A1
- **USER COST** on IMPROVED NETWORK (discounted over 60 yrs) = A2
- **CONSTRUCTION COST** of improvement = PVC
- **USER BENEFITS**: reduction in user costs from improvement scheme = PVB = A1 - A2
- **CRITERION FOR PROJECT APPRAISAL**: NPV = PVB - PVC
3. **BIBLIOGRAPHY**

Design Manual for Roads and Bridges http://www.standardsforhighways.co.uk/dmrb/

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SH 1/97</td>
<td>The Traffic and Economic Assessment of Road Schemes in Scotland (DMRB 5.1.4) for use in Scotland only</td>
</tr>
<tr>
<td>TA 49/07</td>
<td>Appraisal of New and Replacement Lighting on the Strategic Motorway & All Purpose Trunk Road Network (DMRB 8.3)</td>
</tr>
<tr>
<td>TD 9/93</td>
<td>Highway Link Design (DMRB 6.1.1)</td>
</tr>
<tr>
<td>TD 37/93</td>
<td>Scheme Assessment Reporting (DMRB 5.1.2)</td>
</tr>
<tr>
<td>TD 42/95</td>
<td>Geometric Design of Major/Minor Priority Junctions (DMRB 6.2.6)</td>
</tr>
</tbody>
</table>

Journey Speeds Through Small Towns, 1982 - Halcrow Fox and Associates

SAR Scheme Appraisal Report, available at http://www.tamesoftware.co.uk/

TRANSYT Available from TRL, https://www.trlsoftware.co.uk/

TRRL Contractors Report No. 143 - Economic assessment of climbing lanes on motorways and all-purpose dual carriageways (1990 revision)

TRRL Research Report 67 - Prediction of Saturation Flows for Junctions Controlled by Signals

TRRL Research Report 105 - OSCADY: A computer program to model capacities, queues and delays at isolated traffic signal junctions.

TRRL LR940 - ARCADY: A computer program to model capacities, queues and delays at roundabouts. Program Available from TRL Software Bureau. Email: softwarebureau@trl.co.uk

TRRL LR941 - PICADY: A computer program to model capacities, queues and delays at major/minor junctions. Program Available from TRL Software Bureau. Email address: softwarebureau@trl.co.uk

TRRL Working Paper WP/T077 - The Revision of Hourly Traffic Flow Patterns for COBA and QUADRO

4. ENQUIRIES

All technical enquiries or comments on the COBA Manual should be sent to:

TAMESoftware@mottmac.com